Adversarial Robustness for Machine Learning Models

Download or Read online Adversarial Robustness for Machine Learning Models full in PDF, ePub and kindle. This book written by Pin-Yu Chen and published by Academic Press which was released on 15 September 2022 with total pages 425. We cannot guarantee that Adversarial Robustness for Machine Learning Models book is available in the library, click Get Book button to download or read online books. Join over 650.000 happy Readers and READ as many books as you like.

Adversarial Robustness for Machine Learning Models
Author :
Publisher : Academic Press
Release Date :
ISBN : 0128240202
Pages : 425 pages
Rating : /5 ( users)
GET BOOK!

While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. Adversarial robustness has become one of the mainstream topics in machine learning with much research carried out, while many companies have started to incorporate security and robustness into their systems. Adversarial Robustness for Machine Learning Models summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense, and veri?cation. It contains 6 parts: The ?rst three parts cover adversarial attack, veri?cation, and defense, mainly focusing on image classi?cation applications, which is the standard benchmark considered in the adversarial robustness community. It then discusses adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in this area, which can be a good reference for conducting future research. It could also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. Summarizes the whole field of adversarial robustness for Machine learning models A clearly explained, self-contained reference Introduces formulations, algorithms and intuitions Includes applications based on adversarial robustness

Adversarial Robustness for Machine Learning Models

While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. Adversarial robustness has become one

GET BOOK!
Interpretable Machine Learning

Download or read online Interpretable Machine Learning written by Christoph Molnar, published by Lulu.com which was released on 2019. Get Interpretable Machine Learning Books now! Available in PDF, ePub and Kindle.

GET BOOK!
Enhancing Adversarial Robustness of Deep Neural Networks

Logit-based regularization and pretrain-then-tune are two approaches that have recently been shown to enhance adversarial robustness of machine learning models. In the realm of regularization, Zhang et al. (2019) proposed TRADES, a logit-based regularization optimization function that has been shown to improve upon the robust optimization framework developed by Madry et

GET BOOK!
Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies

The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the

GET BOOK!
On the Robustness of Neural Network  Attacks and Defenses

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples. That is, a slightly modified example could be easily generated and fool a well-trained image classifier based on deep neural networks (DNNs) with high confidence. This makes it difficult to apply neural

GET BOOK!
Artificial Neural Networks and Machine Learning     ICANN 2021

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this

GET BOOK!
Adversarial Machine Learning

The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of

GET BOOK!
Robust Machine Learning in Adversarial Setting with Provable Guarantee

Over the last decade, machine learning systems have achieved state-of-the-art performance in many fields, and are now used in increasing number of applications. However, recent research work has revealed multiple attacks to machine learning systems that significantly reduce the performance by manipulating the training or test data. As machine learning

GET BOOK!
Machine Learning with Provable Robustness Guarantees

Although machine learning has achieved great success in numerous complicated tasks, many machine learning models lack robustness under the presence of adversaries and can be misled by imperceptible adversarial noises. In this dissertation, we first study the robustness verification problem of machine learning, which gives provable guarantees on worst case

GET BOOK!
Intelligent Systems and Applications

Download or read online Intelligent Systems and Applications written by Kohei Arai, published by Springer Nature which was released on . Get Intelligent Systems and Applications Books now! Available in PDF, ePub and Kindle.

GET BOOK!
Strengthening Deep Neural Networks

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process

GET BOOK!
Machine Learning and Knowledge Discovery in Databases

This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected

GET BOOK!
Science of Cyber Security

This book constitutes the proceedings of the Second International Conference on Science of Cyber Security, SciSec 2019, held in Nanjing, China, in August 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 62 submissions. These papers cover the following subjects: Artificial Intelligence for Cybersecurity, Machine

GET BOOK!
Robust Machine Learning Models and Their Applications

Recent studies have demonstrated that machine learning models are vulnerable to adversarial perturbations – a small and human-imperceptible input perturbation can easily change the model output completely. This has created serious security threats to many real applications, so it becomes important to formally verify the robustness of machine learning models. This

GET BOOK!
Engineering Dependable and Secure Machine Learning Systems

This book constitutes the revised selected papers of the Third International Workshop on Engineering Dependable and Secure Machine Learning Systems, EDSMLS 2020, held in New York City, NY, USA, in February 2020. The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability

GET BOOK!