Machine Learning for Economics and Finance in TensorFlow 2

Download or Read online Machine Learning for Economics and Finance in TensorFlow 2 full in PDF, ePub and kindle. This book written by Isaiah Hull and published by Apress which was released on 26 November 2020 with total pages 368. We cannot guarantee that Machine Learning for Economics and Finance in TensorFlow 2 book is available in the library, click Get Book button to download or read online books. Join over 650.000 happy Readers and READ as many books as you like.

Machine Learning for Economics and Finance in TensorFlow 2
Author :
Publisher : Apress
Release Date :
ISBN : 1484263723
Pages : 368 pages
Rating : /5 ( users)
GET BOOK!

Download or Read Online Machine Learning for Economics and Finance in TensorFlow 2 in PDF, Epub and Kindle

Work on economic problems and solutions with tools from machine learning. ML has taken time to move into the space of academic economics. This is because empirical work in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine learning is oriented towards prediction and is generally uninterested in either causality or parsimony. That leaves a gap for both students and professionals in the economics industry without a standard reference. This book focuses on economic problems with an empirical dimension, where machine learning methods may offer something of value. This includes coverage of a variety of discriminative deep learning models (DNNs, CNNs, RNNs, LSTMs, the Transformer Model, etc.), generative machine learning models, random forests, gradient boosting, clustering, and feature extraction. You'll also learn about the intersection of empirical methods in economics and machine learning, including regression analysis, text analysis, and dimensionality reduction methods, such as principal components analysis. TensorFlow offers a toolset that can be used to setup and solve any mathematical model, including those commonly used in economics. This book is structured to teach through a sequence of complete examples, each framed in terms of a specific economic problem of interest or topic. Otherwise complicated content is then distilled into accessible examples, so you can use TensorFlow to solve workhorse models in economics and finance. What You'll Learn Define, train, and evaluate machine learning models in TensorFlow 2 Apply fundamental concepts in machine learning, such as deep learning and natural language processing, to economic and financial problems Solve workhorse models in economics and finance Who This Book Is For Students and data scientists working in the economics industry. Academic economists and social scientists who have an interest in machine learning are also likely to find this book useful.

Machine Learning for Economics and Finance in TensorFlow 2

Work on economic problems and solutions with tools from machine learning. ML has taken time to move into the space of academic economics. This is because empirical work in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine learning is oriented towards prediction and

GET BOOK!
Machine Learning in Finance

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial

GET BOOK!
Data Science for Economics and Finance

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used

GET BOOK!
Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python is a problem solver’s guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It

GET BOOK!
Machine Learning for Finance

Plan and build useful machine learning systems for financial services, with full working Python code Key Features Build machine learning systems that will be useful across the financial services industry Discover how machine learning can solve finance industry challenges Gain the machine learning insights and skills fintech companies value most

GET BOOK!
Advances in Financial Machine Learning

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will

GET BOOK!
Machine Learning in Action

Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization

GET BOOK!
Machine Learning for Asset Managers

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine

GET BOOK!
Mathematics for Machine Learning

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.

GET BOOK!
Reinforcement Learning Algorithms with Python

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key Features Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks Understand and develop model-free and model-based algorithms for building self-learning agents Work with advanced Reinforcement Learning concepts and algorithms such

GET BOOK!
Machine Learning for Factor Investing  R Version

Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the

GET BOOK!
Dive Into Deep Learning

Create learning experiences that transform not only learning, but life itself. Learn about, improve, and expand your world of learning. This hands-on companion to the runaway best-seller, Deep Learning: Engage the World Change the World, provides an essential roadmap for building capacity in teachers, schools, districts, and systems to design

GET BOOK!
Machine Learning in Asset Pricing

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are

GET BOOK!
Python for Data Analysis

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas,

GET BOOK!
Essentials of Advanced Macroeconomic Theory

Trying to summarize the essentials of macroeconomic theory in the wake of the financial crisis that has shaken not only Western economies but also the macroeconomic profession is no easy task. In particular, the notion that markets are self-correcting and always in equilibrium appears to have taken a heavy blow.

GET BOOK!