Stochastic Modelling in Process Technology

Download or Read online Stochastic Modelling in Process Technology full in PDF, ePub and kindle. This book written by Herold G. Dehling and published by Elsevier which was released on 03 July 2007 with total pages 290. We cannot guarantee that Stochastic Modelling in Process Technology book is available in the library, click Get Book button to download or read online books. Join over 650.000 happy Readers and READ as many books as you like.

Stochastic Modelling in Process Technology
Author :
Publisher : Elsevier
Release Date :
ISBN : 0080548970
Pages : 290 pages
Rating : /5 ( users)
GET BOOK!

Download or Read Online Stochastic Modelling in Process Technology in PDF, Epub and Kindle

There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. Introduction to stochastic process modelling as an alternative modelling technique Shows how stochastic modelling may be succesful where the traditional technique fails Overview of stochastic modelling in process technology in the research literature Illustration of the principle by a wide range of practical examples In-depth and self-contained discussions Points the way to both mathematical and technological research in a new, rewarding field

Stochastic Modelling in Process Technology

There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a

GET BOOK!
Stochastic Models in Reliability and Maintenance

Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how

GET BOOK!
An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a

GET BOOK!
Markov Processes for Stochastic Modeling

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and

GET BOOK!
Stochastic Modeling of Microstructures

This book is for a general scientific and engineering audience as a guide to current ideas, methods, and models for stochastic modeling of microstructures. It is a reference for professionals in material modeling, mechanical engineering, materials science, chemical, civil, environmental engineering and applied mathematics.

GET BOOK!
Stochastic Modeling and Geostatistics

Download or read online Stochastic Modeling and Geostatistics written by Timothy C. Coburn,Jeffrey M. Yarus,R. L. Chambers, published by AAPG which was released on 2005-12-10. Get Stochastic Modeling and Geostatistics Books now! Available in PDF, ePub and Kindle.

GET BOOK!
An Introduction to Continuous Time Stochastic Processes

This concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. Balancing theory and applications, the authors use stochastic methods and concrete examples to model real-world problems from engineering, biomathematics, biotechnology, and finance. Suitable as a textbook for graduate or advanced undergraduate courses, the

GET BOOK!
Stochastic Modelling in Innovative Manufacturing

This monograph contains some ofthe papers presented at a UK-Japanese Workshop on Stochastic Modelling in Innovative Manufacturing held at Churchill College, Cambridge on July 20 and 21st 1995, sponsored jointly by the UK Engineering and Physical Science Research Council and the British Council. Attending were 19 UK and 24 Japanese delegates representing 28 institutions. The

GET BOOK!
Energy Efficiency in Process Technology

Since 1975 the Commission has been stimulating R & D work aimed at energy saving. The conference objective was to provide an international forum for the presentation and discussion of recent R & D relevant to energy efficiency, taking into account environmental aspects, in the energy intensive process industries.

GET BOOK!
An Introduction to Stochastic Modeling

Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to

GET BOOK!
Stochastic Models in Reliability Engineering

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods

GET BOOK!
Carbon Nanotube Reinforced Polymers

Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a

GET BOOK!
Stochastic Models In Engineering  Technology And Management   Proceedings Of The Australia japan Workshop

Chinese Remainder Theorem, CRT, is one of the jewels of mathematics. It is a perfect combination of beauty and utility or, in the words of Horace, omne tulit punctum qui miscuit utile dulci. Known already for ages, CRT continues to present itself in new contexts and open vistas for new

GET BOOK!
Introduction to Stochastic Processes with R

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of

GET BOOK!
Stochastic Modeling of Manufacturing Systems

Manufacturing systems rarely perform exactly as expected and predicted. Unexpected events, such as order changes, equipment failures and product defects, affect the performance of the system and complicate decision-making. This volume is devoted to the development of analytical methods aiming at responding to variability in a way that limits its

GET BOOK!