The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry

Download or Read online The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry full in PDF, ePub and kindle. This book written by Stephanie K. Ashenden and published by Academic Press which was released on 23 April 2021 with total pages 264. Read The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry Book directly on your devices, fast download and no annoying ads.

The Era of Artificial Intelligence  Machine Learning  and Data Science in the Pharmaceutical Industry
Author :
Publisher : Academic Press
Release Date :
ISBN : 9780128204498
Pages : 264 pages
Rating : /5 ( users)
DOWNLOAD BOOK

Download or Read Online The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry in PDF, Epub and Kindle

The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient’s life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide

The Era of Artificial Intelligence  Machine Learning  and Data Science in the Pharmaceutical Industry

The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment

DOWNLOAD BOOK
Artificial Intelligence in Drug Discovery

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial

DOWNLOAD BOOK
Artificial Intelligence in Healthcare

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The

DOWNLOAD BOOK
Machine Learning and the Internet of Medical Things in Healthcare

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with

DOWNLOAD BOOK
Artificial Intelligence in Medicine

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation;

DOWNLOAD BOOK
Artificial Intelligence in Pharmaceutical Sciences  Drug Discovery

The book has been designed to cover all the basic topics and examples related to disruptive innovations and industry 4.0 in general and in particular, pharmaceutical sciences and other branches of healthcare sectors like medical and diagnostic. Major disruption is due to the advent of Artificial Intelligence, Machine Learning, Deep Learning,

DOWNLOAD BOOK
Machine Learning for Critical Internet of Medical Things

This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how

DOWNLOAD BOOK
Artificial Intelligence in Healthcare

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The

DOWNLOAD BOOK
Artificial Intelligence for Drug Development  Precision Medicine  and Healthcare

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical

DOWNLOAD BOOK
Applications of Machine Learning

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted

DOWNLOAD BOOK
AI First Healthcare

AI is poised to transform every aspect of healthcare, including the way we manage personal health, from customer experience and clinical care to healthcare cost reductions. This practical book is one of the first to describe present and future use cases where AI can help solve pernicious healthcare problems. Kerrie

DOWNLOAD BOOK
Artificial intelligence for Drug Discovery and Development

Topic editor Alex Zhavoronkov is the founder of Insilico Medicine, a company specializing in AI research. He is also a professor at the Buck Institute for Research on Aging. All other Topic Editors declare no competing interests with regards to the Research Topic subject.

DOWNLOAD BOOK
Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization

This book contains chapters that describe advanced atomic force microscopy (AFM) modes and Raman spectroscopy. It also provides an in-depth understanding of advanced AFM modes and Raman spectroscopy for characterizing various materials. This volume is a useful resource for a wide range of readers, including scientists, engineers, graduate students, postdoctoral

DOWNLOAD BOOK
Machine Learning for Healthcare Applications

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in

DOWNLOAD BOOK
Artificial Intelligence in Oncology Drug Discovery and Development

There exists a profound conflict at the heart of oncology drug development. The efficiency of the drug development process is falling, leading to higher costs per approved drug, at the same time personalised medicine is limiting the target market of each new medicine. Even as the global economic burden of

DOWNLOAD BOOK